9,10-Anthraquinone[1]
|
|
|
|
|
|
| Names
|
| Preferred IUPAC name
|
Other names
- Anthraquinone
- 9,10-Anthracenedione
- Anthradione
- 9,10-Anthrachinon
- Anthracene-9,10-quinone
- 9,10-Dihydro-9,10-dioxoanthracene
- Hoelite
- Morkit
- Corbit
|
| Identifiers
|
CAS Number
|
|
3D model (JSmol)
|
|
Beilstein Reference
|
390030
|
| ChEBI
|
|
| ChEMBL
|
|
| ChemSpider
|
|
| ECHA InfoCard
|
100.001.408
|
| EC Number
|
|
Gmelin Reference
|
102870
|
| KEGG
|
|
|
|
|
| RTECS number
|
|
| UNII
|
|
| UN number
|
3143
|
|
|
|
InChI=1S/C14H8O2/c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13/h1-8H Key: RZVHIXYEVGDQDX-UHFFFAOYSA-N
|
O=C1c2ccccc2C(=O)c3ccccc13
|
| Properties
|
Chemical formula
|
C14H8O2
|
| Molar mass
|
208.216 g·mol−1
|
| Appearance
|
Yellow solid
|
| Density
|
1.438 g/cm3[1]
|
| Melting point
|
284.8 °C (544.6 °F; 558.0 K)[1]
|
| Boiling point
|
377 °C (711 °F; 650 K)[1]
|
Solubility in water
|
Insoluble
|
| Hazards
|
| Occupational safety and health (OHS/OSH):
|
Main hazards
|
possible carcinogen
|
| GHS labelling:
|
Pictograms
|
|
Signal word
|
Danger
|
Hazard statements
|
H350
|
Precautionary statements
|
P201, P202, P281, P308+P313, P405, P501
|
| Flash point
|
185 °C (365 °F; 458 K)
|
| Related compounds
|
Related compounds
|
quinone, anthracene
|
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references
|
Anthraquinone, also called anthracenedione or dioxoanthracene, is an aromatic organic compound with formula C
14H
8O
2. Several isomers exist but these terms usually refer to 9,10-anthraquinone (IUPAC: 9,10-dioxoanthracene) wherein the keto groups are located on the central ring. It is used as a digester additive to wood pulp for papermaking. Many anthraquinone derivatives are generated by organisms or synthesised industrially for use as dyes, pharmaceuticals, and catalysts. Anthraquinone is a yellow, highly crystalline solid, poorly soluble in water but soluble in hot organic solvents. It is almost completely insoluble in ethanol near room temperature but 2.25 g will dissolve in 100 g of boiling ethanol. It is found in nature as the rare mineral hoelite.
Synthesis
There are several current industrial methods to produce 9,10-anthraquinone:
- The oxidation of anthracene. Chromium(VI) is the typical oxidant.
- The Friedel–Crafts reaction of benzene and phthalic anhydride in presence of AlCl3. o-Benzoylbenzoic acid is an intermediate. This reaction is useful for producing substituted anthraquinones.
- The Diels-Alder reaction of naphthoquinone and butadiene followed by oxidative dehydrogenation.
- The acid-catalyzed dimerization of styrene to give a 1,3-diphenylbutene, which then can be transformed to the anthraquinone.[3] This process was pioneered by BASF.
It also arises via the Rickert–Alder reaction, a retro-Diels–Alder reaction.
Reactions
Hydrogenation gives dihydroanthraquinone (anthrahydroquinone). Reduction with copper gives anthrone.[4] Sulfonation with sulfuric acid gives anthroquinone-1-sulfonic acid,[5] which reacts with sodium chlorate to give 1-chloroanthaquinone.[6]
Applications
Digester additive in papermaking
9,10-Anthraquinone is used as a digester additive in production of paper pulp by alkaline processes, like the kraft, the alkaline sulfite or the Soda-AQ processes. The anthraquinone is a redox catalyst. The reaction mechanism may involve single electron transfer (SET).[7] The anthraquinone oxidizes the reducing end of polysaccharides in the pulp, i.e., cellulose and hemicellulose, and thereby protecting it from alkaline degradation (peeling). The anthraquinone is reduced to 9,10-dihydroxyanthracene which then can react with lignin. The lignin is degraded and becomes more watersoluble and thereby more easy to wash away from the pulp, while the anthraquinone is regenerated. This process gives an increase in yield of pulp, typically 1–3% and a reduction in kappa number.[8]
Hydrogen peroxide production
2-Alkyl-9,10-Anthroquinones are used as a catalyst in the anthraquinone process for the production of hydrogen peroxide. This process is the dominant industrial method of hydrogen peroxide production.[9]
Niche uses
9,10-anthraquinone is used as a bird repellant on seeds, and as a gas generator in satellite balloons.[10] It has also been mixed with lanolin and used as a wool spray to protect sheep flocks against kea attacks in New Zealand.[11]
Other isomers
Several other isomers of anthraquinone exist, including the 1,2-, 1,4-, and 2,6-anthraquinones. They are of minor importance compared to 9,10-anthraquinone.
Safety
Anthraquinone has no recorded LD50, probably because it is so insoluble in water.
In terms of metabolism of substituted anthraquinones, the enzyme encoded by the gene UGT1A8 has glucuronidase activity with many substrates including anthraquinones.[12]
See also
- Benzoquinone
- Naphthoquinone
- Parietin
- 2-Ethylanthraquinone
References
- ^ a b c d Haynes, William M., ed. (2016). CRC Handbook of Chemistry and Physics (97th ed.). CRC Press. p. 3.28. ISBN 9781498754293.
- ^ International Union of Pure and Applied Chemistry (2014). Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013. The Royal Society of Chemistry. p. 724. doi:10.1039/9781849733069. ISBN 978-0-85404-182-4.
- ^ Vogel, A. "Anthraquinone". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a02_347. ISBN 978-3-527-30673-2.
- ^ Macleod, L. C.; Allen, C. F. H. (1934). "Benzanthrone". Organic Syntheses. 14: 4. doi:10.15227/orgsyn.014.0004.
- ^ Scott, W. J.; Allen, C. F. H. (1938). "Potassium Anthraquinone-α-Sulfonate". Organic Syntheses. 18: 72. doi:10.15227/orgsyn.018.0072.
- ^ Scott, W. J.; Allen, C. F. H. (1938). "α-Chloroanthraquinone". Organic Syntheses. 18: 15. doi:10.15227/orgsyn.018.0015.
- ^ Samp, J. C. (2008). A comprehensive mechanism for anthraquinone mass transfer in alkaline pulping (Thesis). Georgia Institute of Technology. p. 30. hdl:1853/24767.
- ^ Sturgeoff, L. G.; Pitl, Y. (1997) [1993]. "Low Kappa Pulping without Capital Investment". In Goyal, G. C. (ed.). Anthraquinone Pulping. TAPPI Press. pp. 3–9. ISBN 0-89852-340-0.
- ^ Campos-Martin, Jose M.; Blanco-Brieva, Gema; Fierro, Jose L. G. (2006). "Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process". Angewandte Chemie International Edition. 45 (42): 6962–6984. doi:10.1002/anie.200503779. ISSN 1521-3773.
- ^ "www.americanheritage.com". Archived from the original on 2009-06-09. Retrieved 2009-09-22.
- ^ Dudding, Adam (29 July 2012). "How to solve a problem like a kea". Sunday Star Times. New Zealand. Retrieved 11 November 2014.
- ^ Ritter, J. K.; Chen, F.; Sheen, Y. Y.; Tran, H. M.; Kimura, S.; Yeatman, M. T.; Owens, I. S. (1992). "A Novel Complex Locus UGT1 Encodes Human Bilirubin, Phenol, and other UDP-Glucuronosyltransferase Isozymes with Identical Carboxyl Termini" (PDF). Journal of Biological Chemistry. 267 (5): 3257–3261. doi:10.1016/S0021-9258(19)50724-4. PMID 1339448.
External links
Authority control databases |
|---|
| National | |
|---|
| Other | |
|---|
Topics in organic reactions |
|---|
- Addition reaction
- Elimination reaction
- Polymerization
- Reagents
- Rearrangement reaction
- Redox reaction
- Regioselectivity
- Stereoselectivity
- Stereospecificity
- Substitution reaction
|
- A value
- Alpha effect
- Annulene
- Anomeric effect
- Antiaromaticity
- Aromatic ring current
- Aromaticity
- Baird's rule
- Baker–Nathan effect
- Baldwin's rules
- Bema Hapothle
- Beta-silicon effect
- Bicycloaromaticity
- Bredt's rule
- Bürgi–Dunitz angle
- Catalytic resonance theory
- Charge remote fragmentation
- Charge-transfer complex
- Clar's rule
- Conformational isomerism
- Conjugated system
- Conrotatory and disrotatory
- Curtin–Hammett principle
- Dynamic binding (chemistry)
- Edwards equation
- Effective molarity
- Electromeric effect
- Electron-rich
- Electron-withdrawing group
- Electronic effect
- Electrophile
- Evelyn effect
- Flippin–Lodge angle
- Free-energy relationship
- Grunwald–Winstein equation
- Hammett acidity function
- Hammett equation
- George S. Hammond
- Hammond's postulate
- Homoaromaticity
- Hückel's rule
- Hyperconjugation
- Inductive effect
- Kinetic isotope effect
- LFER solvent coefficients (data page)
- Marcus theory
- Markovnikov's rule
- Möbius aromaticity
- Möbius–Hückel concept
- More O'Ferrall–Jencks plot
- Negative hyperconjugation
- Neighbouring group participation
- 2-Norbornyl cation
- Nucleophile
- Kennedy J. P. Orton
- Passive binding
- Phosphaethynolate
- Polar effect
- Polyfluorene
- Ring strain
- Σ-aromaticity
- Spherical aromaticity
- Spiroaromaticity
- Steric effects
- Superaromaticity
- Swain–Lupton equation
- Taft equation
- Thorpe–Ingold effect
- Vinylogy
- Walsh diagram
- Woodward–Hoffmann rules
- Woodward's rules
- Y-aromaticity
- Yukawa–Tsuno equation
- Zaitsev's rule
- Σ-bishomoaromaticity
List of organic reactions |
|---|
Carbon-carbon bond forming reactions | | Homologation reactions |
- Arndt–Eistert reaction
- Hooker reaction
- Kiliani–Fischer synthesis
- Kowalski ester homologation
- Methoxymethylenetriphenylphosphorane
- Seyferth–Gilbert homologation
- Wittig reaction
|
|---|
| Olefination reactions |
- Bamford–Stevens reaction
- Barton–Kellogg reaction
- Boord olefin synthesis
- Chugaev elimination
- Cope reaction
- Corey–Winter olefin synthesis
- Dehydrohalogenation
- Elimination reaction
- Grieco elimination
- Hofmann elimination
- Horner–Wadsworth–Emmons reaction
- Hydrazone iodination
- Julia olefination
- Julia–Kocienski olefination
- Kauffmann olefination
- McMurry reaction
- Peterson olefination
- Ramberg–Bäcklund reaction
- Shapiro reaction
- Takai olefination
- Wittig reaction
|
|---|
|
|---|
Carbon-heteroatom
bond forming reactions |
- Azo coupling
- Bartoli indole synthesis
- Boudouard reaction
- Cadogan–Sundberg indole synthesis
- Diazonium compound
- Esterification
- Grignard reagent
- Haloform reaction
- Hegedus indole synthesis
- Hurd–Mori 1,2,3-thiadiazole synthesis
- Kharasch–Sosnovsky reaction
- Knorr pyrrole synthesis
- Leimgruber–Batcho indole synthesis
- Mukaiyama hydration
- Nenitzescu indole synthesis
- Oxymercuration reaction
- Reed reaction
- Schotten–Baumann reaction
- Ullmann condensation
- Williamson ether synthesis
- Yamaguchi esterification
|
|---|
Degradation reactions |
- Barbier–Wieland degradation
- Bergmann degradation
- Edman degradation
- Emde degradation
- Gallagher–Hollander degradation
- Hofmann rearrangement
- Hooker reaction
- Isosaccharinic acid
- Marker degradation
- Ruff degradation
- Strecker degradation
- Von Braun amide degradation
- Weerman degradation
- Wohl degradation
|
|---|
Organic redox reactions |
- Acyloin condensation
- Adkins–Peterson reaction
- Akabori amino-acid reaction
- Alcohol oxidation
- Algar–Flynn–Oyamada reaction
- Amide reduction
- Andrussow process
- Angeli–Rimini reaction
- Aromatization
- Autoxidation
- Baeyer–Villiger oxidation
- Barton–McCombie deoxygenation
- Bechamp reduction
- Benkeser reaction
- Bergmann degradation
- Birch reduction
- Bohn–Schmidt reaction
- Bosch reaction
- Bouveault–Blanc reduction
- Boyland–Sims oxidation
- Cannizzaro reaction
- Carbonyl reduction
- Clemmensen reduction
- Collins oxidation
- Corey–Itsuno reduction
- Corey–Kim oxidation
- Corey–Winter olefin synthesis
- Criegee oxidation
- Dakin oxidation
- Davis oxidation
- Deoxygenation
- Dess–Martin oxidation
- DNA oxidation
- Elbs persulfate oxidation
- Emde degradation
- Eschweiler–Clarke reaction
- Étard reaction
- Fischer–Tropsch process
- Fleming–Tamao oxidation
- Fukuyama reduction
- Ganem oxidation
- Glycol cleavage
- Griesbaum coozonolysis
- Grundmann aldehyde synthesis
- Haloform reaction
- Hydrogenation
- Hydrogenolysis
- Hydroxylation
- Jones oxidation
- Kiliani–Fischer synthesis
- Kolbe electrolysis
- Kornblum oxidation
- Kornblum–DeLaMare rearrangement
- Leuckart reaction
- Ley oxidation
- Lindgren oxidation
- Lipid peroxidation
- Lombardo methylenation
- Luche reduction
- Markó–Lam deoxygenation
- McFadyen–Stevens reaction
- Meerwein–Ponndorf–Verley reduction
- Methionine sulfoxide
- Miyaura borylation
- Mozingo reduction
- Noyori asymmetric hydrogenation
- Omega oxidation
- Oppenauer oxidation
- Oxygen rebound mechanism
- Ozonolysis
- Parikh–Doering oxidation
- Pinnick oxidation
- Prévost reaction
- Reduction of nitro compounds
- Reductive amination
- Riley oxidation
- Rosenmund reduction
- Rubottom oxidation
- Sabatier reaction
- Sarett oxidation
- Selenoxide elimination
- Shapiro reaction
- Sharpless asymmetric dihydroxylation
- Epoxidation of allylic alcohols
- Sharpless epoxidation
- Sharpless oxyamination
- Stahl oxidation
- Staudinger reaction
- Stephen aldehyde synthesis
- Swern oxidation
- Transfer hydrogenation
- Wacker process
- Wharton reaction
- Whiting reaction
- Wohl–Aue reaction
- Wolff–Kishner reduction
- Wolffenstein–Böters reaction
- Zinin reaction
|
|---|
Rearrangement reactions |
- 1,2-rearrangement
- 1,2-Wittig rearrangement
- 2,3-sigmatropic rearrangement
- 2,3-Wittig rearrangement
- Achmatowicz reaction
- Alkyne zipper reaction
- Allen–Millar–Trippett rearrangement
- Allylic rearrangement
- Alpha-ketol rearrangement
- Amadori rearrangement
- Arndt–Eistert reaction
- Aza-Cope rearrangement
- Baker–Venkataraman rearrangement
- Bamberger rearrangement
- Banert cascade
- Beckmann rearrangement
- Benzilic acid rearrangement
- Bergman cyclization
- Bergmann degradation
- Boekelheide reaction
- Brook rearrangement
- Buchner ring expansion
- Carroll rearrangement
- Chan rearrangement
- Claisen rearrangement
- Cope rearrangement
- Corey–Fuchs reaction
- Cornforth rearrangement
- Criegee rearrangement
- Curtius rearrangement
- Demjanov rearrangement
- Di-π-methane rearrangement
- Dimroth rearrangement
- Divinylcyclopropane-cycloheptadiene rearrangement
- Dowd–Beckwith ring-expansion reaction
- Electrocyclic reaction
- Ene reaction
- Enyne metathesis
- Favorskii reaction
- Favorskii rearrangement
- Ferrier carbocyclization
- Ferrier rearrangement
- Fischer–Hepp rearrangement
- Fries rearrangement
- Fritsch–Buttenberg–Wiechell rearrangement
- Gabriel–Colman rearrangement
- Group transfer reaction
- Halogen dance rearrangement
- Hayashi rearrangement
- Hofmann rearrangement
- Hofmann–Martius rearrangement
- Ireland–Claisen rearrangement
- Jacobsen rearrangement
- Kornblum–DeLaMare rearrangement
- Kowalski ester homologation
- Lobry de Bruyn–Van Ekenstein transformation
- Lossen rearrangement
- McFadyen–Stevens reaction
- McLafferty rearrangement
- Meyer–Schuster rearrangement
- Mislow–Evans rearrangement
- Mumm rearrangement
- Myers allene synthesis
- Nazarov cyclization reaction
- Neber rearrangement
- Newman–Kwart rearrangement
- Overman rearrangement
- Oxy-Cope rearrangement
- Pericyclic reaction
- Piancatelli rearrangement
- Pinacol rearrangement
- Pummerer rearrangement
- Ramberg–Bäcklund reaction
- Ring expansion and contraction
- Ring-closing metathesis
- Rupe reaction
- Schmidt reaction
- Semipinacol rearrangement
- Seyferth–Gilbert homologation
- Sigmatropic reaction
- Skattebøl rearrangement
- Smiles rearrangement
- Sommelet–Hauser rearrangement
- Stevens rearrangement
- Stieglitz rearrangement
- Thermal rearrangement of aromatic hydrocarbons
- Tiffeneau–Demjanov rearrangement
- Vinylcyclopropane rearrangement
- Wagner–Meerwein rearrangement
- Wallach rearrangement
- Weerman degradation
- Westphalen–Lettré rearrangement
- Willgerodt rearrangement
- Wolff rearrangement
|
|---|
Ring forming reactions |
- 1,3-Dipolar cycloaddition
- Annulation
- Azide-alkyne Huisgen cycloaddition
- Baeyer–Emmerling indole synthesis
- Bartoli indole synthesis
- Bergman cyclization
- Biginelli reaction
- Bischler–Möhlau indole synthesis
- Bischler–Napieralski reaction
- Blum–Ittah aziridine synthesis
- Bobbitt reaction
- Bohlmann–Rahtz pyridine synthesis
- Borsche–Drechsel cyclization
- Bucherer carbazole synthesis
- Bucherer–Bergs reaction
- Cadogan–Sundberg indole synthesis
- Camps quinoline synthesis
- Chichibabin pyridine synthesis
- Cook–Heilbron thiazole synthesis
- Cycloaddition
- Darzens reaction
- Davis–Beirut reaction
- De Kimpe aziridine synthesis
- Debus–Radziszewski imidazole synthesis
- Dieckmann condensation
- Diels–Alder reaction
- Feist–Benary synthesis
- Ferrario–Ackermann reaction
- Fiesselmann thiophene synthesis
- Fischer indole synthesis
- Fischer oxazole synthesis
- Friedländer synthesis
- Gewald reaction
- Graham reaction
- Hantzsch pyridine synthesis
- Hegedus indole synthesis
- Hemetsberger indole synthesis
- Hofmann–Löffler reaction
- Hurd–Mori 1,2,3-thiadiazole synthesis
- Iodolactonization
- Isay reaction
- Jacobsen epoxidation
- Johnson–Corey–Chaykovsky reaction
- Knorr pyrrole synthesis
- Knorr quinoline synthesis
- Kröhnke pyridine synthesis
- Kulinkovich reaction
- Larock indole synthesis
- Madelung synthesis
- Nazarov cyclization reaction
- Nenitzescu indole synthesis
- Niementowski quinazoline synthesis
- Niementowski quinoline synthesis
- Paal–Knorr synthesis
- Paternò–Büchi reaction
- Pechmann condensation
- Petrenko-Kritschenko piperidone synthesis
- Pictet–Spengler reaction
- Pomeranz–Fritsch reaction
- Prilezhaev reaction
- Pschorr cyclization
- Reissert indole synthesis
- Ring-closing metathesis
- Robinson annulation
- Sharpless epoxidation
- Simmons–Smith reaction
- Skraup reaction
- Urech hydantoin synthesis
- Van Leusen reaction
- Wenker synthesis
| Cycloaddition |
- 1,3-Dipolar cycloaddition
- 4+4 Photocycloaddition
- (4+3) cycloaddition
- 6+4 Cycloaddition
- Alkyne trimerisation
- Aza-Diels–Alder reaction
- Azide-alkyne Huisgen cycloaddition
- Bradsher cycloaddition
- Cheletropic reaction
- Conia-ene reaction
- Cyclopropanation
- Diazoalkane 1,3-dipolar cycloaddition
- Diels–Alder reaction
- Enone–alkene cycloadditions
- Hexadehydro Diels–Alder reaction
- Intramolecular Diels–Alder cycloaddition
- Inverse electron-demand Diels–Alder reaction
- Ketene cycloaddition
- McCormack reaction
- Metal-centered cycloaddition reactions
- Nitrone-olefin (3+2) cycloaddition
- Oxo-Diels–Alder reaction
- Ozonolysis
- Pauson–Khand reaction
- Povarov reaction
- Prato reaction
- Retro-Diels–Alder reaction
- Staudinger synthesis
- Trimethylenemethane cycloaddition
- Vinylcyclopropane (5+2) cycloaddition
- Wagner-Jauregg reaction
|
|---|
| Heterocycle forming reactions |
- Algar–Flynn–Oyamada reaction
- Allan–Robinson reaction
- Auwers synthesis
- Bamberger triazine synthesis
- Banert cascade
- Barton–Zard reaction
- Bernthsen acridine synthesis
- Bischler–Napieralski reaction
- Bobbitt reaction
- Boger pyridine synthesis
- Borsche–Drechsel cyclization
- Bucherer carbazole synthesis
- Bucherer–Bergs reaction
- Chichibabin pyridine synthesis
- Cook–Heilbron thiazole synthesis
- Diazoalkane 1,3-dipolar cycloaddition
- Einhorn–Brunner reaction
- Erlenmeyer–Plöchl azlactone and amino-acid synthesis
- Feist–Benary synthesis
- Fischer oxazole synthesis
- Gabriel–Colman rearrangement
- Gewald reaction
- Hantzsch ester
- Hantzsch pyridine synthesis
- Herz reaction
- Knorr pyrrole synthesis
- Kröhnke pyridine synthesis
- Lectka enantioselective beta-lactam synthesis
- Lehmstedt–Tanasescu reaction
- Niementowski quinazoline synthesis
- Nitrone-olefin (3+2) cycloaddition
- Paal–Knorr synthesis
- Pellizzari reaction
- Pictet–Spengler reaction
- Pomeranz–Fritsch reaction
- Prilezhaev reaction
- Robinson–Gabriel synthesis
- Stollé synthesis
- Urech hydantoin synthesis
- Wenker synthesis
- Wohl–Aue reaction
|
|---|
|
|---|
|